Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Anchor
A7.3
A7.3
Figure 377 375 shows the principle of the determination of the interfering power. If  f_ILT =f_ VLR then the interfering frequencies fall exactly in the receiving band of the victim link receiver (co-channel interference).

For simplification within the algorithms the mask function p_m_ILT is normaliSed normalized to 1 Hz reference bandwidth:

 

Mathinline
body${{p}_{n\_ILT}}={{p}_{m\_ILT}}(\Delta f)-10{{\log }_{10}}\left( \frac{b}{1Hz} \right)$
   (                        Image Added              (Eq. 110)

The bandwidth b is the bandwidth used for the emission mask. The total received interfering power emission_ILT can easily be calculated by integration over the receiver bandwidth from  to

Mathinline
body $powe{{r}_{ILT}}=10{{\log }_{10}}\left\{ \int\limits_{a}^{b}{{{10}^{\left( {{p}_{n\_ILT}}(\Delta f)/10 \right)}}}d\Delta f \right\}$
    (          Image Added                     (Eq. 111)

with p_n_ILT denoting the normalized mask in dBm/Hz. Using 1 Hz reference bandwidth the integral can be replaced by a summation

Mathinline
body$powe{{r}_{ILT}}=10{{\log }_{10}}\left\{ \sum\limits_{i=a}^{b}{{{10}^{\left( {{p}_{n\_ILT}}(\Delta {{f}_{i}})/10 \right)}}} \right\}$
    (                    Image Added               (Eq. 112)

where power_ILT is given in dBm.

Note:  The interfering power of a radio system having a different bandwidth can be estimated by the aforementioned algorithms. This calculation is only required for the interference due to unwanted emissions but not for blocking and intermodulation.

Anchor
F377F375F377
F375
Figure 377375: Integration of the unwanted emissions in the victim link receiver band

The total interfering power relative to carrier  can be calculated by integration over the receiver bandwidth from  to 

Mathinline
body$emission\_re{{l}_{ILT}}=10\log \left\{ \int_{a}^{b}{P_{rel}^{linear}\left( \Delta f \right)d\Delta f} \right\}=10\log \left\{ \int_{a}^{b}{{{10}^{\frac{P_{rel}^{dBc}\left( \Delta f \right)}{10}}}d\Delta f} \right\}$
       Image Added                    (Eq. 113)

with  denoting the normaliSed normalized user-defined mask in dBc/Hz.

This mask is expressed as an array of N+1 points  and assumed linear between these points.

                             

Mathinline
body$P_{rel}^{dBc}\left( \Delta f \right)={{P}_{i}}+\frac{\Delta {{f}_{{}}}-\Delta {{f}_{i}}}{\Delta {{f}_{i+1}}-\Delta {{f}_{i}}}\left( {{P}_{i+1}}-{{P}_{i}} \right)$
                    Image Added        (Eq. 114)

This leads to:

Mathinline
body$emission\_re{{l}_{it}}=10\log \left\{ \sum\limits_{i=0}^{N-1}{\int_{\Delta {{f}_{i}}}^{\Delta {{f}_{i+1}}}{{{10}^{\frac{P_{rel}^{dBc}\left( \Delta f \right)}{10}}}d\Delta f}} \right\}$
                   Image Added                   (Eq. 115)

where:

                                                   

Mathinline
body$\Delta {{f}_{0}}=a={{f}_{VLR}}-{{f}_{ILT}}-{{B}_{VLR}}/2$
                                     Image Added                  (Eq. 116)

                                                  

Mathinline
body$\Delta {{f}_{N}}=b={{f}_{VLR}}-{{f}_{ILT}}+{{B}_{VLR}}/2$
                                Image Added                      (Eq. 117)

Intermediate calculation

Mathinline
body$\begin{align} & emission\_rel_{i}^{dBc}=\int_{\Delta {{f}_{i}}}^{\Delta {{f}_{i+1}}}{{{10}^{\frac{P_{rel}^{dBc}\left( \Delta f \right)}{10}}}d\Delta f} \\ & emission\_rel_{i}^{dBc}={{10}^{\frac{{{P}_{i}}}{10}}}\int_{\Delta {{f}_{i}}}^{\Delta {{f}_{i+1}}}{{{\left[ {{10}^{\frac{{{P}_{i+1}}-{{P}_{i}}}{10\left( \Delta {{f}_{i+1}}-\Delta {{f}_{i}} \right)}}} \right]}^{\left( \Delta {{f}_{{}}}-\Delta {{f}_{i}} \right)}}d\Delta f} \\ & emission\_rel_{i}^{dBc}=\frac{{{10}^{\frac{{{P}_{i}}}{10}}}}{{{K}^{\Delta {{f}_{i}}}}}\int_{\Delta {{f}_{i}}}^{\Delta {{f}_{i+1}}}{{{K}^{\left( \Delta {{f}_{{}}}-\Delta {{f}_{i}} \right)}}d\Delta f},\quad K={{10}^{\frac{{{P}_{i+1}}-{{P}_{i}}}{10\left( \Delta {{f}_{i+1}}-\Delta {{f}_{i}} \right)}}} \\ & emission\_rel_{i}^{dBc}=\frac{{{10}^{\frac{{{P}_{i}}}{10}}}}{{{K}^{\Delta {{f}_{i}}}}}\left[ {{e}^{\ln K}} \right]_{\Delta {{f}_{i}}}^{\Delta {{f}_{i+1}}}=\frac{{{10}^{\frac{{{P}_{i}}}{10}}}}{\ln K}\left[ {{K}^{\Delta {{f}_{i+1}}-\Delta {{f}_{i}}}}-1 \right],\quad \ln K=\frac{\ln 10}{10}.\frac{{{P}_{i+1}}-{{P}_{i}}}{\Delta {{f}_{i+1}}-\Delta {{f}_{i}}} \\ & \\ \end{align}$
    (Eq. 118)

      

Mathinline
body$emission\_rel_{i}^{dBc}=\frac{10}{\ln 10}\frac{{{10}^{{{P}_{i+1}}}}-{{10}^{{{P}_{i}}}}}{{{P}_{i+1}}-{{P}_{i}}}\left( \Delta {{f}_{i+1}}-\Delta {{f}_{i}} \right)$
    Image Added    (Eq. 118)

                      Image Added         (Eq. 119)

Eventually:

Mathinline
body$emission\_re{{l}_{ILT}}=10\log \left\{ \frac{10}{\ln 10}\sum\limits_{i=0}^{N-1}{\frac{\left( P_{i+1}^{linear}-P_{i}^{linear} \right)\left( \Delta {{f}_{i+1}}-\Delta {{f}_{i}} \right)}{\left( P_{i+1}^{dBc}-P_{i}^{dBc} \right)}} \right\}$
      Image Added                  (Eq. 120)