A.17.20.1 Description of the model
...
This path loss model was developed by ITU-R and its detailed description can be found in [1]. The model was developed for the evaluation of candidate IMT-Advanced Radio Interface Technologies in the frequency band 2–6 GHz and for the following environments: urban macro (UMa), urban micro (UMi), suburban macro (SMa), rural macro (RMa), and indoor hotspot (InH). Note that only outdoor scenarios UMa, SMa, and RMa are implemented in SEAMCAT. The path loss model from Report ITU-R M.2135-1 is an empirical path loss model based on measurements results carried out in IST-WINNER II project [2], as well as results from the literature. The model supports LOS and NLOS propagation conditions as well as the LOS probabilities. This model includes clutter loss and as such, it is not to be combined with the clutter loss model of Recommendation ITU-R P.2108-0.
Table 1: ITUITU-R M.2135-1 Path Loss model
...
Scenario
...
LOS/NLOS
...
Path Loss [dB]
...
Shadow fading std [dB]
...
Applicability ranges and default values [m]
...
Urban Macro (UMa)
...
LOS
...
PLUMa-LOS= PL1, 10 m≤d≤dBP'PL2, dBP'≤d≤5 km , (see Note 1)
...
σSF=4
...
hMS=1.5
hBS=25
...
PL1=28.0+22log10d+20log10fc
...
PL2=7.8+40log10d-18.0log10hBS'-18.0log10hMS'+2.0log10fc
...
NLOS
...
PLUMa-NLOS=161.04-7.1log10W+7.5log10h-24.37-3.7hhBS2log10hBS+(43.42-3.1log10hBS))log10d-3+20log10 fc-(3.2log1011.75hMS2-4.97)
...
σSF=6
...
hBS=25
hMS=1.5
W=20
h=20
10≤d≤5000
10≤hBS≤150
1≤hMS≤10
5≤W≤50
5≤h≤50
Suburban Macro (SMa)
LOS
PL1=20log10(40πd3Dfc/3)+min0.03h1.72, 10log10d- min0.044
...
PLSMa-LOS= PL1, 10 m≤d≤dBP'PL2, dBP'≤d≤5 km , (see Note 2)
h1.72, 14.77+0.002dlog10h
...
σSF=4
...
Mathinline | ||
---|---|---|
|
...
σSF=4
...
Mathinline | ||
---|---|---|
|
...
σSF=6
...
NLOS
...
Mathinline | ||
---|---|---|
|
...
σSF=8
Rural Maro (RMa)
LOS
...
PLRMa-LOS= PL1, 10 m≤d≤dBP'PL2, dBP'≤d≤10 km , (see Note 2)
...
Mathinline | ||
---|---|---|
|
...
σSF=4
...
Mathinline | ||
---|---|---|
|
...
σSF=6
...
NLOS
Mathinline | ||
---|---|---|
|
...
Note 1:
Breakpoint distance dBP'=4hBS'hMS'fc/c, where fc is the centre frequency in Hz, c=3×108 m/s is the propagation velocity in free space, and hBS' and hMS' are the effective antenna heights at the BS and the MS, respectively. The effective antenna heights hBS' and hMS' are computed as follows: hBS'=hBS-hE, hMS'=hMS-hE, where hBS and hMS are the actual antenna heights, and hE is the effective environment height assumed to be hE=1 m.
...
hBS=maxhTx, hRx
hMS=minhTx, hRx
Table 2: LOS Probability
Scenario | LOS probability | ||||||||
UMa |
| ||||||||
SMa |
| ||||||||
RMa |
|
...
The input parameters for the path loss model ITU-R M.2135-1 are shown in Figure 1 and defined in Table 3.
Figure 1: GUI of the ITU-R M.2135-1 path loss model
Table 3: Parameters of the ITU-R M.2135-1 path loss model
Description | Symbol | Type | Unit | Comments |
Variation | σSF | B | dB | Variation in path loss (applies shadow fading) |
Scenario | - | S | - | Urban Macro Cell (UMa), Suburban Macro Cell (SMa) or Rural Macro Cell (RMa) |
Line of Sight | - | S | - | Line of Sight (LOS), Non-Line of Sight (NLOS), or LOS Probabilities |
Street width | W | D | m | Average street width |
Building height | h | D | m | Average building height |
...