Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...


Description

Symbol

Type

Unit

Comments

Variation




Variation in path loss takes into account the uncertainty of building design, furniture, room size, etc.

General environment




Environment of the propagation: urban, rural, suburban

Propagation environment




Environment of the propagation: Below roof, Above roof (used for standard deviation calculations)

ONLY USED IF VARIATION OPTION IS CHECKED

Wall loss(indoor - indoor)


Scalar

dB


Wall loss std dev (indoor - indoor)


Scalar

dB


Loss between adjacent floor


Scalar

dB


Empirical parameters:

b



This parameter is used for the necessary corrections to be performed in the local environments if the transmitter and receiver are located in the same building in order to apply the correct wall attenuation between them. The snippet of code below this table indicates the exact calculation performed within SEAMCAT.

Size of the room

droom

Scalar

m


Height of each floor

hfloor

Scalar

m



Method in SEAMCAT to perform corrections to the local environments, depending on the location of the transmitter and receiver (i.e. within the same building or in different buildings):


Code Block
 protected static LocalEnvCorrections localEnvCorrections(LocalEnvCorrections localEnvironmentCorrections,LinkResult linkResult,

double

            double floorHeight,double roomSize, double wiLoss, double floorLoss, double empiricalParam, double wiStdDev)
{
 {

        //LocalEnvCorrections result = new LocalEnvCorrections(0, localEnvironmentCorrections.rStdDev);

LocalEnvironmentResult rxEnv =

        LocalEnvironmentResult rxEnv = linkResult.rxAntenna().getLocalEnvironment();

LocalEnvironmentResult txEnv =

        LocalEnvironmentResult txEnv = linkResult.txAntenna().getLocalEnvironment();


        // CAUTION : do NOT permute the order of the
tests
if (
 tests
        if ( rxEnv.getEnvironment() == Indoor && txEnv.getEnvironment() == Indoor)
{
if (
 {
            if ( linkResult.isTxRxInSameBuilding() )
{
 {
                // Transmitter and receiver are located in the same
building
 building
                // specific calculation : replaces standard
calculation
double rK;rK = Math.abs(
 calculation
                double rK;

                rK = Math.abs(
                        Math.floor(linkResult.txAntenna().getHeight()/ floorHeight)
-
 -
                        Math.floor(linkResult.rxAntenna().getHeight()/ floorHeight)

);double d1 =

                );

                double d1 = linkResult.txAntenna().getHeight() - linkResult.rxAntenna().getHeight();

double realDistance =

                double realDistance = Math.sqrt( (d1*d1) + (linkResult.getTxRxDistance()*linkResult.getTxRxDistance()) );


                 localEnvironmentCorrections.rMedianLoss = -27.6

+ 20.0
*

                        + 20.0
                        * Math.log10(1000 * realDistance)

+ 20.0
*

                         +  20.0
                        * Math.log10(linkResult.getFrequency())

+

                        + Math.floor(1000 * linkResult.getTxRxDistance() / roomSize)

* wiLoss
+

                        * wiLoss
                        + Math.pow(rK,


                        ((rK + 2.0) / (rK + 1.0) - empiricalParam))

* floorLoss;

                        * floorLoss;
                localEnvironmentCorrections.rStdDev = wiStdDev;

} else {
// Transmitter and receiver are located in different buildings
// Calculation is similar to indoor-outdoor case with doubled
// corrections
localEnvironmentCorrections.rMedianLoss +=

            } else {
                // Transmitter and receiver are located in different buildings
                // Calculation is similar to indoor-outdoor case with doubled
                // corrections
                localEnvironmentCorrections.rMedianLoss += rxEnv.getWallLoss() + txEnv.getWallLoss();


                localEnvironmentCorrections.rStdDev =
Math
.sqrt(
localEnvironmentCorrections.rStdDev * localEnvironmentCorrections.rStdDev +
 Math
                        .sqrt(
                                localEnvironmentCorrections.rStdDev * localEnvironmentCorrections.rStdDev +
                                        ((txEnv.getWallLossStdDev() * txEnv.getWallLossStdDev())
+
 +
                                                (rxEnv.getWallLossStdDev() * rxEnv.getWallLossStdDev())));

}
} else if

            }
        } else if (rxEnv.getEnvironment() == Indoor && txEnv.getEnvironment() == Outdoor)
{
 {
            localEnvironmentCorrections.rMedianLoss += rxEnv.getWallLoss();


            localEnvironmentCorrections.rStdDev = Math.sqrt(localEnvironmentCorrections.rStdDev * localEnvironmentCorrections.rStdDev
+
 +
                    rxEnv.getWallLossStdDev() * rxEnv.getWallLossStdDev());

} else if

        } else if (rxEnv.getEnvironment() == Outdoor && txEnv.getEnvironment() == Indoor)
{
 {
            localEnvironmentCorrections.rMedianLoss += txEnv.getWallLoss();


            localEnvironmentCorrections.rStdDev = Math.sqrt(localEnvironmentCorrections.rStdDev * localEnvironmentCorrections.rStdDev
+
 +
                    txEnv.getWallLossStdDev()*txEnv.getWallLossStdDev());

}
// outdoor outdoor => no correction
return localEnvironmentCorrections;
}

        }
        // outdoor outdoor => no correction
        return localEnvironmentCorrections;
		}