Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Anchor
A17.5.3
A17.5.3
According to ITU-R Rec. P.526-2, the diffraction loss  Lp (d) can be derived by the received field strength  E referred to the free space E0 :

     Image Removed                                        

Mathinline
body$-{{L}_{d}}(p)=20\log \frac{E}{{{E}_{0}}}=F(X)+G({{Y}_{1}})+G({{Y}_{2}})$
   (Eq. 220)

with:

  X

Mathinline
body$X$
    is the normalized radio path between transmitter and receiver Image Removed   Y1    
Mathinline
body$X=2.2\beta \ {{f}^{\frac{\ 1}{3}}}\ a_{e}^{\frac{-2}{3}}\ d$

 

Mathinline
bodyY1
  is the normalized antenna height of the transmitter Image Removed    Y2 transmitter  
Mathinline
body$Y=9.6\ \cdot {{10}^{-3}}\beta \ {{f}^{\frac{2}{3}}}\ a_{e}^{\frac{-1}{3}}\ h{}_{i}$

Mathinline
bodyY2
   is the normalized antenna height of the receiver


where:Image Removed

Mathinline
body$\beta $
 is a parameter derived from the earth admittance factor K  :Image Removed =1 for > :  
Mathinline
body$\beta $
 =1 for 
Mathinline
body$f$
 > 20 MHz.

 f is

Mathinline
body$f$
 is the frequency in MHz

Mathinline
body${{a
e is
}_{e}}$
 is the equivalent earth radius in km (definition see below)d is

Mathinline
body$d$
 is the distance in km

Mathinline
body${{h
i is
}_{i}}$
 is the antenna height above ground in m with =1 or 2 for the transmitter or receiver, respectively

The distance-dependent term F

Mathinline
body$F(X)
 is
$
  is given by the semi-empirical formula:

...

                       

Mathinline
body$F(X)=11+10\log (X)-17.6X$
 (Eq. 221)

The antenna height gain G

Mathinline
body$G(Y)
is
$
 is given by the formula set:

            Image Removed                  for Y>2                                                (Eq. 222)

 Image Removedfor  10K < Y < 2                                 

             Image Removed     for    K/10 < Y < 10K                      

                                              Image Removed                for    Y < K/10                                 

...

   

    

Mathinline
body$G(Y)=17.6{{(Y-1.1)}^{\frac{1}{2}}}-5\log (Y-1.1)-8$
 for 
Mathinline
bodyY>2
 

Mathinline
body$G(Y)=20\log (Y+0.1{{Y}^{3}})$
 for
Mathinline
body$10K<Y<2$
 

       

Mathinline
body$G(Y)=2+20\log K+9\log (Y/K)\left[ \log (Y/K)+1 \right]$
  for  
Mathinline
body$K/10<Y<10K$
 

                             

Mathinline
body$G(Y)=2+20\log K$
 for  
Mathinline
body$Y<K/10$
 


where

Mathinline
body$K$
 is the normalized earth surface admittance factor (see ITU-R Rec. P.526), default value 10e-5:

...