Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Anchor
A2.1
A2.1
If the dRSS signal is above the sensitivity floor, it is counted as qualifying snapshot and if then the composite iRSS signal satisfies the criteria (e.g. if dRSS-iRSS>C/I), then the system notes that the given snapshot produced the non-interfered communication attempt.

...

                                                                                                  P

Mathinline
body P_I=1-P_NI
                       
    
(Eq. 74)

were pNI is the probability of Non Interference (NI) of the receiver.

When a C/I criterion is considered, pNI is defined as:

                        Image Removed                         

Mathinline
body${{p}_{NI}}=P\left( \left. \frac{dRSS}{iRS{{S}_{comp}}}>\frac{C}{I} \right|dRSS>sens \right)$
   (Eq. 75)

since by definition P(A|B)=P(A∩B)/P(B), pNI becomes:


                                                                              Image Removed       

Mathinline
body

 

${{p}_{NI}}=\frac{P\left( \frac{dRSS}{iRS{{S}_{comp}}}>\frac{C}{I},\quad \quad dRSS>sens \right)}{P\left( dRSS>sens \right)}$
    (Eq. 76)

with Image Removedwhere

Mathinline
body$iRS{{S}_{comp}}=\sum\limits_{j=1}^{P}{iRS{{S}_{j}}}$
 where P is the number of interferers (i.e. active transmitters).

Monte Carlo method is applied individually to the numerator and to the denominator of the expression of pNI . The result obtained is an estimation of pNI  by using the following equations (p’NI):

...

Mathinline
body$p{{'}_{NI}}=\frac{\frac{1}{M}\sum\limits_{i=1}^{M}{{{1}_{\left\{ \frac{dRSS(i)}{iRS{{S}_{comp}}(i)}>\frac{C}{I},\quad \quad dRSS(i)>sens \right\}}}}}{\frac{1}{M}\sum\limits_{i=1}^{M}{{{1}_{\left\{ dRSS(i)>sens \right\}}}}}=\frac{\sum\limits_{i=1}^{M}{{{1}_{\left\{ \frac{dRSS(i)}{iRS{{S}_{comp}}(i)}>\frac{C}{I},\quad \quad dRSS(i)>sens \right\}}}}}{\sum\limits_{i=1}^{M}{{{1}_{\left\{ dRSS(i)>sens \right\}}}}}$
   (Eq. 77)

with M the number of events (or snapshots) and where

...


Mathinline
body${{1}_{\left\{ condition \right\}}}=\left\{ \begin{matrix} 1, & \text{if condition is satisfied} \\ 0, & \text{else} \\ \end{matrix} \right.$
   (Eq. 78)

Similarly, when a C/(I+N) criterion is considered, pNI is defined as:

                           Image Removed         

Mathinline
body${{p}_{NI}}=\frac{P\left( \frac{dRSS}{iRS{{S}_{comp}}+N}>\frac{C}{I+N},\quad \quad dRSS>sens \right)}{P\left( dRSS>sens \right)}$
   (Eq. 79)

When a (I+N)/N criterion is considered, pNI is defined as:

...

             

Mathinline
body${{p}_{NI}}=\frac{P\left( \frac{iRS{{S}_{comp}}+N}{N}>\frac{I+N}{N},\quad \quad dRSS>sens \right)}{P\left( dRSS>sens \right)}$
   (Eq. 80)

When a I/N criterion is considered, pNI is defined as:

                   Image Removed            

Mathinline
body${{p}_{NI}}=\frac{P\left( \frac{iRS{{S}_{comp}}}{N}>\frac{I}{N},\quad \quad dRSS>sens \right)}{P\left( dRSS>sens \right)}$
   (Eq. 81)