Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

A17.19.1 Description of the model

...


This

...

path

...

loss

...

model

...

was

...

developed

...

by

...

the

...

IST-WINNER

...

II

...

project

...

and

...

its

...

detailed

...

description

...

can

...

be

...

found

...

in

...

[1

...

].

...

  This

...

is

...

an

...

empirical

...

path

...

loss

...

model

...

based

...

on

...

the

...

measurements

...

results

...

carried

...

out

...

in

...

the

...

IST-WINNER

...

II

...

project,

...

as

...

well

...

as

...

results

...

from

...

the

...

literature.

...

It

...

was

...

developed

...

for

...

link

...

and

...

system

...

level

...

simulations

...

of

...

IMT

...

Radio

...

Interface

...

Technologies

...

beyond

...

3G

...

in

...

the

...

frequency

...

band

...

2–6

...

GHz.

...

 It covers

...

wide

...

scope

...

of

...

propagation

...

scenarios

...

and

...

environments,

...

including

...

Suburban

...

macro-cell

...

(C1),

...

Urban

...

macro-cell

...

(C2),

...

Rural

...

macro

...

cell

...

(D1),

...

indoor-to-outdoor,

...

outdoor-to-indoor,

...

bad

...

urban

...

micro-cell,

...

bad

...

urban

...

macro-cell,

...

feeder

...

link

...

base

...

station

...

(BS)

...

to

...

fixed

...

relay

...

station

...

(FRS),

...

and

...

moving

...

networks

...

BS

...

to

...

mobile

...

relay

...

station

...

(MRS),

...

MRS

...

to

...

mobile

...

station

...

(MS).

...

Note

...

that

...

only

...

outdoor

...

scenarios

...

C1,

...

C2,

...

and

...

D1

...

are

...

implemented

...

in

...

SEAMCAT.

...

The

...

model

...

supports

...

LOS

...

and

...

NLOS

...

propagation

...

conditions

...

as

...

well

...

as

...

the

...

LOS

...

probabilities.

...

This

...

model

...

includes

...

clutter

...

loss

...

and

...

as

...

such,

...

it

...

is

...

not

...

to

...

be

...

combined

...

with

...

the

...

clutter

...

loss

...

model

...

of

...

Recommendation

...

ITU-R

...

P.2108-0.


Table A19.1: WINNER II Path Loss Model

Scenario

LOS/NLOS

Path Loss [dB]

Shadow fading std [dB]

Applicability ranges and default values [m]

Urban Macro (C2)

LOS

PLC2-LOS= PL1, 10 m≤d≤dBP'PL2, dBP'≤d≤5 km , (see Note 1)

 

hMS=1.5
hBS=25

 

 PL1=Alog10d+B+Clog10fc5

Mathinline
body--uriencoded--%7BPL%7D_1=A\log_%7B10%7D%7Bd%7D+B+C\log_%7B10%7D%7B\left(\frac%7Bf_c%7D%7B5%7D\right)%7D

A=26, B=39, C=20

σSF=4

 

 

 PL2

Mathinline
body--uriencoded--%7BPL%7D_2=13.47+

40log10d

40\log_%7B10%7D%7Bd%7D-14.

0log10hBS'

0\log_%7B10%7D%7Bh_%7BBS%7D%5e\prime-14.

0log10hMS'+6.0log10fc5

0\log_%7B10%7D%7Bh_%7BMS%7D%5e\prime+%7D%7D6.0\log_%7B10%7D%7B\left(\frac%7Bf_c%7D%7B5%7D\right)%7D

σSF=6

 

 

NLOSPLC2-NLOS=

Mathinline
body--uriencoded--PL_%7BC2-NLOS%7D=\left(44.9-6.

55log10hBSlog10d

55\log_%7B10%7D%7Bh_%7BBS%7D%7D\right)\log_%7B10%7D%7Bd%7D+34.46+5.

83log10hBS+23log10fc5

83\log_%7B10%7D%7Bh_%7BBS%7D%7D+23\log_%7B10%7D%7B\left(\frac%7Bf_c%7D%7B5%7D\right)%7D

σSF=8

hBS=25
hMS=1.5
50≤d≤5000

Suburban Macro (C1)

LOS

PLC1-LOS= PL1, 30 m≤d≤dBPPL2, dBP≤d≤5 km , (see Note 2)

 

hBS=25
hMS=1.5

 

 PL1=Alog10d+B+Clog10fc5

Mathinline
body--uriencoded--%7BPL%7D_1=A\log_%7B10%7D%7Bd%7D+B+C\log_%7B10%7D%7B\left(\frac%7Bf_c%7D%7B5%7D\right)%7D

A=23.8, B=41.2, C=20

σSF=4

 

 

 PL2

Mathinline
body--uriencoded--%7BPL%7D_2=11.65+

40log10d

40\log_%7B10%7D%7Bd%7D-16.

2log10hBS

2\log_%7B10%7D%7Bh_%7BBS%7D-16.

2log10hMS+3.8log10fc5

2\log_%7B10%7D%7Bh_%7BMS%7D+%7D%7D3.8\log_%7B10%7D%7B\left(\frac%7Bf_c%7D%7B5%7D\right)%7D

σSF=6

 

 

NLOSPLC1-NLOS=

Mathinline
body--uriencoded--PL_%7BC1-NLOS%7D=\left(44.9-6.

55log10hBSlog10d

55\log_%7B10%7D%7Bh_%7BBS%7D%7D\right)\log_%7B10%7D%7Bd%7D+31.46+5.

83log10hBS+23log10fc5

83\log_%7B10%7D%7Bh_%7BBS%7D%7D+23\log_%7B10%7D%7B\left(\frac%7Bf_c%7D%7B5%7D\right)%7D

σSF=8

hBS=25
hMS=1.5
50≤d≤5000

Rural Maro (D1)

LOS

PLD1-LOS= PL1, 10 m≤d≤dBPPL2, dBP≤d≤10 km ,

(see Note 2)

 

hBS=32
hMS=1.5

 

 PL1=Alog10d+B+Clog10fc5

Mathinline
body--uriencoded--%7BPL%7D_1=A\log_%7B10%7D%7Bd%7D+B+C\log_%7B10%7D%7B\left(\frac%7Bf_c%7D%7B5%7D\right)%7D

A=21.5, B=44.2, C=20

σSF=4

 

 

 PL2

Mathinline
body--uriencoded--%7BPL%7D_2=10.5+

40log10d

40\log_%7B10%7D%7Bd%7D-18.

5log10hBS

5\log_%7B10%7D%7Bh_%7BBS%7D-18.

5log10hMS+1.5log10fc5

5\log_%7B10%7D%7Bh_%7BMS%7D+%7D%7D1.5\log_%7B10%7D%7B\left(\frac%7Bf_c%7D%7B5%7D\right)%7D

σSF=6

 

 

NLOSPLD1-NLOS

Mathinline
body--uriencoded--PL_%7BD1-NLOS%7D=25.

1log10d

1\log_%7B10%7D%7Bd%7D+55.4-0.

13hBS-25log10d100

13\left(h_%7BBS%7D-25\right)\log_%7B10%7D%7B\left(\frac%7Bd%7D%7B100%7D\right)%7D-0.9(

hMS

h_%7BMS%7D-1.5)+21.

3log10fc5

3\log_%7B10%7D%7B\left(\frac%7Bf_c%7D%7B5%7D\right)%7D

σSF=8

hBS=32
hMS=1.5
50≤d≤5000

...


Anchor
_Ref529442393
_Ref529442393
Table A19.2: LOS Probability


Scenario

LOS probability

C2

PLOS=min18d, 1⋅1-exp-d63+exp-d63

C1

PLOS=exp-d200

D1

PLOS=exp-d1000

...

Mathinline
body--uriencoded--P_%7BLOS%7D=\min%7B\left(\frac%7B18%7D%7Bd%7D,\ 1\right)%7D\cdot\left(1-\exp%7B\left(-\frac%7Bd%7D%7B63%7D\right)%7D\right)%7B+%7D\exp%7B\left(-\frac%7Bd%7D%7B63%7D\right)%7D

C1

Mathinline
body--uriencoded--P_%7BLOS%7D=\exp%7B\left(-\frac%7Bd%7D%7B200%7D\right)%7D

D1

Mathinline
body--uriencoded--P_%7BLOS%7D=\exp%7B\left(-\frac%7Bd%7D%7B1000%7D\right)%7D

Note: System level simulations require estimates of the probability of line-of-sight.

...

The

...

LOS

...

probability

...

models

...

are

...

based

...

on

...

relatively

...

limited

...

data

...

sets

...

and/or

...

specific

...

assumptions

...

and

...

approximations

...

regarding

...

the

...

location

...

of

...

obstacles

...

in

...

the

...

direct

...

path,

...

and

...

should

...

therefore

...

not

...

be

...

considered

...

exact.

...


In

...

case

...

the

...

LOS

...

probability

...

is

...

used,

...

the

...

path

...

loss

...

is

...

computed

...

as

...

follows:

for a given Tx-Rx distance d:

  • compute probability of LoS:  
    Mathinline
    body--uriencoded--P_%7BLOS%7D
  • draw a sample value from uniform distribution 
    Mathinline
    body u\ =\ U(0,1)
  • if 
    Mathinline
    body--uriencoded--u\ <\ P_%7BLOS%7D
     the path is LoS:

Mathinline
body--uriencoded--PL=%7BPL%7D_%7BLOS%7D\ \ \ \ \ \ \ \ (dB)

  • else the path is NLoS:

Mathinline
body--uriencoded--PL=%7BPL%7D_%7BNLOS%7D\ \ \ \ \ \ (dB)

where path losses in the LOS and NLOS conditions (

Mathinline
body--uriencoded--PL_%7BLOS%7D
and
Mathinline
body--uriencoded--PL_%7BNLOS%7D
) and the LOS probability,
Mathinline
body--uriencoded--P_%7BLOS%7D
, for a given scenario are shown in Table A.17.19.1

...

and

...

Table

...

A.17.19.2,

...

respectively.

...

 


A17.19.2 Input parameters

...



Anchor
_Ref507762590
_Ref507762590
Figure A17.19.1: GUI of the WINNER II path loss model


Anchor
_Ref507762636
_Ref507762636
Table A.17.19.3: Parameters of the WINNER II path loss model


Description

Symbol

Type

Unit

Comments

Variation

σSF

B

dB

Variation in path loss (applies shadow fading)

Scenario

-

S

-

Urban Macro Cell (C2), Suburban Macro Cell (C1) or Rural Macro Cell (D1)

Line of Sight

-

S

-

Line of Sight (LOS), Non-Line of Sight (NLOS), or LOS Probabilities

...